
Uniquitous: Implementation and Evaluation of a
Cloud­based Game System in Unity

Meng Luo and Mark Claypool
Interactive Media & Game Development and Computer Science Department

Worcester Polytechnic Institute
Worcester, MA 01609, USA

{mluo2|claypool}@wpi.edu

ABSTRACT

Cloud gaming is an emerging service based on cloud computing

technology which allows games to be run on a server and streamed

as video to players on a thin client. Commercial cloud gaming

systems, such as Onlive, Gaikai and StreamMyGame remain pro-

prietary, limiting access for game developers and researchers. In

order to address this shortcoming, we present an open source

cloud-based game system in Unity called Uniquitous that gives

game developers and researchers control over both the cloud sys-

tem and the game content. Detailed experiments evaluate per-

formance of Uniquitous for three main parameters: game genre,

game resolution and game image quality. The evaluation results

are used in a data model that can predict in-game frame rates

for systems with configurations beyond those tested. Validation

experiments show the accuracy of our model and complement the

release of Uniquitous as a research and development platform.

1. INTRODUCTION
Cloud gaming is estimated to grow from $1 billion in 2010

to $9 billion in 2017 [4], a rate much faster than either boxed
games sold through traditional retail or games sold online.
In 2012, Sony bought the Gaikai1 cloud gaming service for
$380 million and integrated this service into their PlaySta-
tion 4 [11, 12].

Cloud gaming provides benefits to users, developers and
publishers over traditional gaming. Cloud gaming services
mean players no longer need to upgrade their gaming hard-
ware, such as desktops, laptops and game consoles, in order
to play the latest games, as well as opens up game opportu-
nities for users with low-end gaming hardware. Game devel-
opers only need to develop one version for the cloud server
platform instead of developing a version for each client type,
thus reducing game development time and cost. Publishers
can more easily protect against piracy since cloud games

1http://gaikai.com

Submitted to the 25th ACM SIGMMWorkshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), March 19th,
2015 Portland, Oregon, USA.

are only installed in the cloud, thus limiting the ability of
malicious users to copy them.

Despite some recent success, cloud gaming faces a number
of challenges before it can be deployed widely for all types
of games, game devices and network connections: 1) net-
work latency, inherent in the physical distance between the
server and the client, must be overcome; 2) high network
capacities are needed in order to stream game content as
video down to the client; and 3) processing delays at the
cloud gaming server need to be minimized in order for the
game to be maintained, rendered and streamed to the client
effectively for playing. Research and development required
to overcome these challenges needs cloud gaming testbeds
that allow identification of performance bottlenecks and ex-
ploration of possible solutions.

Currently, several commercial cloud gaming systems, such
as OnLive2 and StreamMyGame3 have been used for cloud
gaming research. Although these commercial services can
be readily accessed, their technologies are proprietary, pro-
viding no way for researchers to access their code. This
makes it difficult for researchers to explore new technolo-
gies in cloud-based gaming, such as latency compensation
techniques, and makes it difficult for game developers to
test their games for suitability for cloud-based deployment.
While GamingAnywhere [7] provides a complete open source
cloud gaming system, it remains completely separated from
the game itself, not supporting integration and simultaneous
exploration of game code and the cloud system.

In order to provide a more flexible and easily accessed
platform for cloud gaming researchers and game developers,
we present Uniquitous,4 a cloud gaming system implemented
using Unity.5 Unity is a cross-platform game creation sys-
tem with a game engine and integrated development envi-
ronment. Uniquitous blends seamlessly with Unity, mak-
ing it especially convenient for Unity developers, one of the
largest and most active developer communities in the world
– the Unity community increased from 1 million registered
developers in 2012 to 2.5 million in 2014, with approximately
600,000 active monthly [14].

Uniquitous is open source, allowing modification and con-
figuration of internal cloud gaming structures, such as frame
rate, image quality, image resolution and audio quality, in
order to explore system bottlenecks and meet different client-

2http://onlive.com/
3http://streammygame.com/
4http://uniquitous.wpi.edu/
5http://unity3d.com/

server requirements. In addition to system modifications,
by being in Unity, Uniquitous enables game content adjust-
ments for further exploring the relationship between game
content and cloud gaming performance. For example, game
objects can be adjusted to study the effect of scene complex-
ity on network bitrates, or camera settings can be altered to
study the effect of perspective on cloud gaming frame rates.

This paper presents the design and implementation of
Uniquitous and performance evaluation on two levels: a)
micro-experiments that detail performance for each compo-
nent in Uniquitous, providing bottleneck analysis on compo-
nents that limit game performance; and b) macro-experiments
that measure the overall performance of Uniquitous under
various configurations as perceived by the player. In addi-
tion, this paper presents a model for predicting Uniquitous
with different configurations, enabling estimation of perfor-
mance for games and hardware not yet tested. Validation
of the model suggests it is effective for predicting frame rate
over a range of configuration parameters.

The rest of the paper is organized as follows: Section 2
presents work related to the design, implementation and
evaluation of cloud gaming systems and Uniquitous; Sec-
tion 3 describes the design and implementation of Uniqui-
tous; Section 4 details the micro experiments and their re-
sults; Section 5 does the same for the macro experiments,
also presenting our model; and Section 6 summarizes our
conclusions and mentions possible future work.

2. RELATED WORK
This section lists research work related to cloud gaming

systems, in the areas of architecture, frameworks and mea-
surement.

2.1 Cloud System Architecture
There is no single agreed-upon cloud system architecture.

However, a four-layer architecture defined by Foster et al. [5]
has frequently been used by researchers. Foster et al.’s
model from bottom to top has a fabric layer, unified re-
source layer, platform layer and application layer. For our
work, the Uniquitous server runs at the application layer.
Foster et al. also list cloud services at three different levels:
infrastructure as a service, platform as a service, and soft-
ware as a service. Cloud gaming in general, and Uniquitous
specifically, is an example of software as a service.

2.2 Cloud Gaming Frameworks
Cloud gaming frameworks can be classified into three types

based on how they allocate the workload between cloud
servers and clients [7]: 3d graphics streaming, video stream-
ing and video streaming with post-rendering. All three ap-
proaches reduce computation on the client versus a tradi-
tional game architecture because the game world is managed
on the server instead of the client. In 3d graphics streaming,
as done by de Winter et al. [16], instead of sending video, the
server sends graphics commands to the client and the client
renders the game scene images. Shea et al. [13] describe
a cloud gaming system using a video streaming framework
where the server is responsible for rendering the game scene,
compressing the images as video, and then transmitting to
the client. The video streaming with post-rendering opera-
tions approach is in-between the other two approaches, per-
forming part of the rendering process on the server and the
rest on the client.

The video streaming approach is discussed the most in
current research [8, 9, 13] and is currently used by most
existing commercial cloud gaming systems since it reduces
the workload on the client the most compared to the other
two approaches. Uniquitous also uses the video streaming
approach.

2.3 System Measurement
Huang et al. [7] measure system delays in GamingAny-

where, isolating the system measurements into individual
components. Our micro-experiments for Uniquitous simi-
larly decompose the system into smaller parts for bottleneck
analysis.

Chang et al. [2] propose a methodology for quantifying the
performance of gaming thin-clients. From results for Log-
MeIn, TeamViewer and UltraVNC, they demonstrate that
frame rate and frame quality are both critical to gaming
performance, with frame rate being the slightly more im-
portant of the two. Claypool et al. [3] use a custom game
with levels that combine different actions and perspectives
to measure user performance with different display settings.
Their user study results show that frame rate has a much
greater influence on user performance than does frame res-
olution. Based on these conclusions, recommendations for
Uniquitous configurations preserve frame rate at the cost of
frame quality and frame resolution, as appropriate.

3. UNIQUITOUS
Uniquitous, shown in Figure 1, is composed of three enti-

ties: Unity Project, Uniquitous Server and Uniquitous Thin
Client. The Uniquitous Server and the Uniquitous Thin
Client run on two separate computers connected by an In-
ternet connection while the Unity Project runs on the same
computer as the Uniquitous Server.

Figure 1 shows three types of data flows in Uniquitous,
illustrated with different shades/colors: the red image data
flow carries data for the game frames (Section 3.1); the green
audio data flow carries data for the game audio (Section 3.2);
and the blue input data flow carries data for user input (Sec-
tion 3.3). Flows within components on the same machine are
represented with dashed lines while flows across the network
are shown with solid lines.

3.1 Image Data Flow
The Game Window component is part of the Unity Inte-

grated Development Environment and works with the Unity
camera to capture and display the game content to the
player. The Screen Capture component is used to capture
the game screen from the Game Window, reading the pixel
data and storing it as a Texture2D object. The Image En-
coding component is implemented using a JPEG encoder [1]
that is configurable with a JPEG quality factor that changes
the visual quality and compression ratio of the game image.
The JPEG encoder compresses the Texture2D object into
byte arrays. The Image Transmission component uses re-
mote procedural calls (RPCs) provided by ulink6 to send
the image byte arrays to the client. Once the encoded byte
arrays arrive on the client, the Image Reception component
passes the compressed data to the Image Decoding com-
ponent. The Image Decoding component loads the data
back into a Texture2D object for display. The Image Dis-

6
http://developer.muchdifferent.com/unitypark/uLink

Figure 1: Uniquitous architecture

play component is implemented using the DrawTexture()

method and called in the OnGUI() event function, drawing
the game image on the client’s screen. The image size and
position on screen can be adjusted by users.

3.2 Audio Data Flow
The Audio Source component receives all game audio in

the scene from the Unity audio listener. The Audio Cap-
ture component records audio data from the Audio Source
using OnAudioFilterRead(), getting a chunk of audio data
about every 20 ms. Each chunk is converted it into an ar-
ray of 8192 bytes and written into a localhost TCP net-
work stream to the Audio Encoding & Transmission com-
ponent. The Audio Encoding & Transmission component
uses FFMPEG,7 a cross-platform system to record, convert
and stream audio and video, running in a separate process.
The audio data is compressed via MP3 and streamed over
UDP to the Audio Reception & Decoding component on the
client. The Audio Reception & Decoding component uses
FFPLAY, a portable media player implemented using FFM-
PEG and SDL8 running as its own process to receive the
compressed audio stream from the server. The Audio En-
coding & Transmission component decodes the audio stream
and plays the sound on the client’s speakers.

3.3 Input Data Flow
The Image Transmission component receives input data

from the player via Unity. Unity provides access for three
types of player input data: mouse positions, mouse clicks

7http://ffmpeg.org
8http://libsdl.org

and keyboard strokes. Mouse movements are translated into
the Vector3 coordinates of the mouse cursor on the client’s
screen. Mouse clicks are translated into an integer value,
0 or 1. Arrow keys are translated into values between -1
and 1 along the horizontal and vertical axes. Other key-
board strokes are translated into the ASCII values of the
keys pressed. The Image Transmission component uses UDP
RPC for network transmissions from the client to the server.
The interactions with the Unity built-in GUI system such
as GUI.Button and GUI.TextField cannot be transferred
since these interactions are event based. Instead, the In-
put Reception component passes player input to the Unity
Game component using a custom GUI system for all game
scripts affected by user input, such as character movement
and GUI interactions.

4. MICRO EXPERIMENTS
This section presents experiments evaluating the Uniqui-

tous server components based on the architecture from Fig-
ure 1, focusing on processing time. Due to space constraints,
only the most important components are presented, with a
full evaluation available in the thesis [10].

4.1 Setup
All experiments were run on PCs with Intel 3.4 GHz i7-

3770 processors, 12 GB of RAM and AMD Radeon HD 7700
series graphic cards, each running 64-bit Windows 7 Enter-
prise. The PCs were connected by a 100 Mbps network
LAN. The games tested, the Car Tutorial9 and Angry Bots
(version 4.0)10 are provided by Unity Technologies.

4.2 Measuring Time
Three different methods provided the processing times of

different components: 1) The Unity Pro Profiler allowed
observation of the CPU time for each component on the
server for a fixed number of frames, averaged to provide
the per frame CPU time. This method was used for the
Unity Project and the Game Window. 2) Time stamps in
the source code before and after each component measured
time per frame for a fixed number of frames, averaged to pro-
vide per frame times. This method was used for the Screen
Capture time, Image Encoding time and Image Transmis-
sion time. 3) The Unix (Cygwin) command time was used
to get CPU time for running a component. Ten runs were
repeated and averaged from the results. This method was
used for the Audio Encoding & Transmission component.

4.3 Screen Capture
Figure 2 shows the per frame screen capture time for both

games at nine different resolutions. The x axis is the number
of pixels (width× height) and the y axis is the screen capture
time, in milliseconds. Each point is the average, shown with
standard error bars. The blue square trend line is for the
Car Tutorial game and the red dot trend line is for the Angry
Bots game.

Generally, the capture time increases linearly with pixels,
with the exception of the mid-range where the trendlines
are relatively flat. The capture time is mostly independent
of the game. Capture times are potentially low enough to

9
https://www.assetstore.unity3d.com/en/#!/content/10

10
https://www.assetstore.unity3d.com/en/#!/content/12175

Figure 2: Screen capture time versus resolution for

both games

Figure 3: Image encoding time versus JPEG encod-

ing quality factor for Angry Bots

achieve a target frame rate time of 30 fps (i.e., under 33
milliseconds).

4.4 Image Encoding
Figure 3 shows the image encoding time versus JPEG en-

coding quality factor at different resolutions when running
Angry Bots. The x axis is the JPEG quality factor, where
a higher factor represents a better game image. The y axis
is the encoding time, in milliseconds. Each source image
resolution is depicted by a separate trend line.

There is a slight increase in per-image encoding time as
the quality factor goes from 0 to 80, with a sharp increase
at 100. Higher resolution images take more processing time
than lower resolution images and encoding times low enough
to achieve a target frame rate time of 30 fps are only possible
for images size 640× 480 or smaller.

4.5 Network Bitrate
Uniquitous was configured with a resolution of 640× 480

and a JPEG encoding quality factor of 20, and then Angry-
Bots was run for five minutes. Wireshark11 captured the
network packets sent between the Uniquitous server and the

11http://wireshark.org

Figure 4: SSIM versus JPEG encoding quality fac-

tor for Car Tutorial

client during this time. Data collected during a one-minute
period in the middle of the game was analyzed. The down-
link bitrate fluctuates around 3.5 Mbps, with a standard
error of 0.025., and the uplink bitrate fluctuates around 32
Kbps with a standard error of 0.159.

5. MACRO EXPERIMENTS
This section presents experiments evaluating the Uniqui-

tous system as perceived by the player, focusing on game
image quality (Section 5.1) and frame rate (Section 5.2).
The setup is as for the micro experiments. As for Section 4,
a full evaluation is available in the thesis [10].

5.1 Game Image Quality
In order to evaluate the game image quality provided by

Uniquitous, we used 200 images with 20 different compres-
sion ratios and 10 different resolutions. For reproducibility,
all results derive from an image captured from Car Tutorial.
Structural Similarity Index (SSIM) [15] is used to evaluate
the visual quality of the compressed images.12 SSIM models
the image distortion as a number from 0 (low) to 1 (high)
due to compression as a combination of loss of correlation,
luminance distortion and contrast distortion.

The SSIM results are shown in Figure 4. The x axis is the
JPEG quality factor, and the y axis is the SSIM. Each point
is the average SSIM per frame for an experimental run, with
trendlines grouping the different screen resolutions.

From Figure 4, higher resolution images have better SSIM.
All lines show a marked increase in SSIM from quality factor
0-15 and modest increase from 15-35. After 35, the increase
is slight or, in the case of the lowest resolutions, none. This
suggests there is little visual benefit to JPEG quality factors
above 35.

5.2 Frame Rate
To evaluate frame rates achievable in Uniquitous, 44 con-

figurations for Car Tutorial and 37 configurations for Angry
Bots were tested. Each configuration varied the JPEG en-
coding quality factor and resolution. To compute the frame
rate, the time difference methodology (Section 4.2) provided
the average frame intervals, and the inverse provided the

12PSNR results available in in [10].

Figure 5: Frame rate versus JPEG quality factor for

Angry Bots

frame rate. Due to space constraints, only the Angry Bots
results are discussed, but Car Tutorial results are similar.

Figure 5 shows the frame rate results for Angry Bots. The
x axis is the JPEG quality factor, and the y axis is the frame
rate. Each point is the average of an experimental run, with
trendlines grouping the different screen resolutions. Note,
the higher resolution images are not tested at higher JPEG
quality factors since RPC limits prevent images larger than
64 Kbytes from being transmitted.

From Figure 5, Angry Bots can achieve a maximum frame
rate of 41 fps at a 210× 114 resolution and 1 JPEG encod-
ing. With the exception of this smallest image resolution,
decreasing the JPEG quality factor does little to change
the frame rate. However, increasing the frame resolution
has a pronounced effect on decreasing the frame rate for
both games. Based on previous results [3], frame rate is
more important than resolution and a game system needs
to provide a minimum of 15 fps for reasonable player perfor-
mance. Both games tested can achieve 15 fps at a resolution
of 640 × 480, the recommended resolution setting for Uniq-
uitous on this setup.

5.3 Predicting Frame Rate
Since the frame rate depends on the processing and de-

livery time for each frame, predicting the frame rate for a
Uniquitous configuration proceeds by modeling the bottle-
neck components on the server.

By default, the Uniquitous Server operates over 4 separate
groups, illustrated in Figure 6, each group running in a sep-
arate thread: group 1 runs in the main Unity thread; group
2 runs the Image Encoding component (the JPEG encoder);
group 3 runs the Unity audio engine; and group 4 runs an
independent FFMPEG process. Since analysis shows au-
dio is not the bottleneck [10], only group 1 and group 2
are considered when modeling performance. In group 1, the
Input Reception, Unity Game and Game Window compo-
nents run in parallel with Image Encoding from group 2,
while Screen Capture and Image Transmission do not. Each
frame, Screen Capture captures and delivers the screen then
waits until both the Image Encoding and Image Transmis-
sion components are done before capturing the next screen.
Similarly, Image Transmission waits until Image Encoding
is done. Thus, although running in separate threads, Screen

Figure 6: Parallel working structure of Uniquitous

Server

Capture and Image Transmission can be blocked by Image
Encoding.

Whichever processing time is larger – the first three com-
ponents of group 1 or the last two components of group 1
and group 2 – determines how fast each frame can be pro-
vided and the overall frame rate:

F =
1

T
(1)

T = max(T1′ , T2) + TscreenCap + Ttransmit (2)

T1′ = Tunity + Trender (3)

T2 = TimgEn (4)

T1′ is the processing time of the first three components of
group 1. T2 is the processing time of group 2 (Image En-
coding). T is the frame interval, the sum of TscreenCap,
Ttransmit and the maximum of T1 and T2. F is the pre-
dicted frame rate. Treceive is effectively ignored because the
processing time for receiving input is negligibly small com-
pared to the processing time of other components.

In addition, since Screen Capture, Image Encoding and
Image Transmission run in a coroutine that is called peri-
odically every 20 milliseconds, the transmission of the com-
pressed image (and thus the processing time for all three
components) has an additional delay, Tcoroutine ∈ [0, 20]:

T = max(T1, T2) + TscreenCap + Ttransmit + Tcoroutine (5)

In order to build a model predicting frame rates for Uniq-
uitous configurations not measured, we used a Weka clas-
sifier [6] with a 10-fold cross validation to make a linear
regression model for both games:

FCarTutorial = 1 / (0.1348 ×R + 0.118 ×Q+ 21.0) (6)

FAngryBots = 1 / (0.1361 ×R + 0.1224 ×Q+ 22.5) (7)

F is the predicted frame rate, R is the total pixel resolution
divided by 1000, and Q is the JPEG quality factor.

Figure 7: Actual versus predicted frame rate

In order to validate our model, we chose new R and Q
values that had not been tested before, 35 for the Car Tuto-
rial and 30 for Angry Bots, and measured the actual frame
rates recorded. The results are show in Figure 7.

The x axis is the predicted frame rate and the y axis is
the actual frame rate as measured. Each point is the aver-
age frame rate over the experimental run. The diagonal line
shows what would be perfect prediction. Generally, most
of the data points are near this line, showing the accuracy
of the model. The points are somewhat closer to the line
for frame rates under 20 fps than for frame rates over 25
fps, probably due to unaccounted for processing that ac-
cumulates more with more frames per second. The actual
and predicted frame rate have a correlation of 0.995 for Car
Tutorial and 0.981 for Angry Bots.

6. CONCLUSION
Realizing the potential for cloud gaming requires testbed

systems for researchers and developers. This paper presents
Uniquitous,13 an open source cloud gaming system in Unity.
Uniquitous seamlessly blends with Unity game development,
providing control not only over the game system but also
over the game content in a cloud-based environment. Micro
experiments provide performance evaluation of the Uniqui-
tous components, macro experiments evaluate game quality
of the Uniquitous system, and models allow for prediction
of Uniquitous frame rates for configurations not yet tested.

The micro experiments show that game resolution does
not correlate with processing time for the Unity Project and
Game Window components, but does with the Screen Cap-
ture, Image Transmission and Image Encoding components.
Moreover, the processing time of Image Transmission and
Image Encoding correlates with game image quality. The
Unity Project running the game is the most time consum-
ing component on the server when the game image quality
and resolution are both low, but Image Encoding becomes
the bottleneck for higher resolutions.

The macro experiments show game image quality increases

13http://uniquitious.wpi.edu/

markedly as the JPEG quality factor increases between 1
and 15, shows a modest increase between 15 and 35, and
little improvement after 35. For our system testbed, JPEG
quality factors below 35 and resolutions below 640 × 480
provide frame rates near 15 fps, suitable for game play [3].
Validations show our models based on resolution and image
quality can be used to accurately predict frame rates, and
thus pre-configure Uniquitous for acceptable performance.

Future work can seek to increase Uniquitous frame rates
and/or support higher resolutions and image qualities. In
addition, more game genres can be tested, exploring the
relationship between the game genre and cloud gaming per-
formance. Uniquitous can be deployed on mobile devices,
allowing for evaluation of cloud gaming on wide-area net-
works and resource limited devices.

7. REFERENCES
[1] A. Broager. JPEG Encoder Source for Unity in C#.

goo.gl/FwOfOW. [online; accessed 06-May-2014].
[2] Y.-C. Chang, P.-H. Tseng, K.-T. Chen, and C.-L. Lei.

Understanding the Performance of Thin-Client Gaming. In
Proceedings of Communications Quality and Reliability
(CQR), Naples, FL, USA, May 2011.

[3] M. Claypool and K. Claypool. Perspectives, Frame Rates
and Resolutions: Its all in the Game. In Proceedings of
Foundations of Digital Games (FDG), FL, USA, Apr. 2009.

[4] Distribution and Monetization Strategies to Increase
Revenues from Cloud Gaming. goo.gl/YnlE9V, 2012.
[online; accessed 01-May-2014].

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing
and Grid Computing 360-Degree Compared. In Proceedings
of Grid Computing Environments Workshop (GCE), pages
1–10, Austin, TX, USA, Nov. 2008.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA Data Mining
Software: An Update. SIGKDD Explorations, 11(1), 2009.

[7] C. Huang, Y. C. C. Hsu, and K. Chen. GamingAnywhere:
An Open Cloud Gaming System. In Proceedings of ACM
MMSys, Oslo, Norway, Feb. 2013.

[8] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoβfeld. An
Evaluation of QoE in Cloud Gaming Based on Subjective
Tests. In IEEE Innovative Mobile and Internet Services in
Ubiquitous Computing, pages 330–335, Seoul, Korea, 2011.

[9] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei. Are All
Games Equally Cloud-gaming-friendly? An
Electromyographic Approach. In Proceedings of
IEEE/ACM NetGames, Venice, Italy, Oct. 2012.

[10] M. Luo. Uniquitous: Implementation and Evaluation of a
Cloud-Based Game System in Unity 3D. Master’s thesis,
Worcester Polytechnic Institute, 2014. Adv: M. Claypool.

[11] J. Plafke. CES 2014: Gaikai Becomes PlayStation Now,
Streaming Games To Just About Everything.
goo.gl/AOMK5V, Jan. 2014. [online; accessed 01-May-2014].

[12] S. Sakr. Sony Buys Gaikai Cloud Gaming Service for $380
Million. goo.gl/S9P3KJ, July 2012. [online; accessed
01-May-2014].

[13] R. Shea, J. Liu, E. Ngai, and Y. Cui. Cloud Gaming:
Architecture and Performance. IEEE Network, 27:16–21,
Aug. 2013.

[14] Unity Company Facts.
http://unity3d.com/public-relations, acc 01-May-2014.

[15] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image Quality Assessment: From Error Visibility to
Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600–612, Apr. 2004.

[16] D. Winter, P. Simoens, L. Deboosere, F. Turck, J. Moreau,
B. Dhoedt, and P. Demeester. A Hybrid Thin-client
Protocol for Multimedia Streaming and Interactive Gaming
Applications. In NOSSDAV, Newport, RI, USA, May 2006.

